Synthesis and properties of isocyanate and isothiocyanate d^{1} - and d^{2} -complexes of vanadocene

G.A. Razuvaev^{*}, A.S. Gordetsov, V.N. Latyaeva, S.V. Zimina, S.E. Skobeleva, N.P. Makarenko, V.K. Cherkasov, V.P. Mar'in and Yu.I. Dergunov

Institute of Chemistry, Academy of Sciences of the U.S.S.R., Gorky (U.S.S.R.) and Medical Institute, Gorky (U.S.S.R.)

(Received January 20th, 1987)

Abstract

The reactions of vanadocene and its halides Cp_2VCl_2 with R_3MNCX (M = Sn, Si, X = O, S) and $R_2M(NCX)_2$ in various molar ratios have been studied. The reactions proceed either by an exchange of groups, with no change in the oxidation state of vanadium, or by an oxidative addition of pseudohalide ligand: $V^{II} \rightarrow V^{III}$; $V^{III} \rightarrow V^{IV}$. Oxidative addition results in the formation of $(R_3M)_2$ or gaseous hydrogen (in the reaction with HCl) in the reaction products.

We have prepared the first ever monomeric and readily oxidisable d^2 -complexes of V^{III} of Cp₂VNCX-type and asymmetric d^1 -complexes of Cp₂V(Cl)NCX type, which, although rather stable in air, undergo disproportionation into symmetric d^1 -complexes on heating. In transmetallation reactions the ligand activity is found to increase in the order Cl < NCO < NCS. The complexes were characterised by GLC analysis, IR and ESR spectroscopy. A general scheme for the disproportionation reaction of asymmetric complexes of vanadocene is supported by differential thermal analysis data.

Introduction

The carbenoid properties of vanadocene have been of great use for obtaining mono- and dicyclopentadienyl complexes in reactions with halogen derivatives, acyl peroxides, carbonic acids, etc. [1–3]. Vanadium is well-known for a great number of highly specific oxidative-reductive processes which result mainly in the formation of V^{IV} and V^{II} in the case of asymmetric covalent derivatives of V^{III} [4] or in the formation of V^{III} in the case of vanadocene derivatives [5]:

 $Cp_2VR_2 + Cp_2V \rightarrow 2Cp_2VR$

Isocyanate and isothiocyanate derivatives of vanadocene have not been studied in detail, except the d^1 -complexes of Cp₂V(NCX)₂ (X = O, S) type [6]. However, the

presence of the pseudohalide ligand in these compounds led us to the idea of using them as biologocally-active compounds while investigating oxidative-reductive processes in the d^3 -, d^2 -, d^3 -complexes of vanadocene. Here we examine the exchange reactions of vanadocene and its chlorides with organotin and -silicon isocyanates and isothiocyanates.

Results and discussion

As a follow-up to the investigation of organometallic heterocumulenes [7] we have carried out the first ever reaction of vanadocene and its mono- and dichlorides with organotin and -silicon isocyanates and isothiocyanates. Reaction of vanadocene with tributylstannylisocyanate, -isothiocyanate, trimethylsilylisothiocyanate or dibutylstannyldiisothiocyanate results in novel d^2 -complexes of vanadocene: bis(π -cyclopentadienyl)vanadiumisocyanate (I) and bis(π -cyclopentadienyl)vanadiumisothiocyanate or toluene, 20 ° C, 3–20 d.; 120 ° C, 4–5 h) [8]:

$$R_{3}MNCX + Cp_{2}V \rightarrow Cp_{2}VN = C = X + 1/2(R_{3}M)_{2}$$
(1a)
(1). (II)
(1). X = 0. II: X = S

 $Bu_2Sn(NCS)_2 + 2Cp_2V \rightarrow 2Cp_2VNCS + 1/n(Bu_2Sn)_n$ (1b)

Neither an excess of the original isocyanate (2:1 to 4:1) nor further heating $(150 \,^{\circ}\text{C}, 5-8 \text{ h})$ resulted in the subsequent oxidation of V^{III} to V^{IV}. Neither was Cp₂V(NCS)₂ formed when the corresponding d^2 -complex was heated with Me₃SiNCS under more severe conditions (190 $^{\circ}\text{C}$, 10–15 h). However, reaction with Bu₂Sn(NCS)₂ or Bu₃SnNCS, Cp₂V led to the partial transformation of compound II into the d^1 -complex, Cp₂V(NCS)₂.

Compounds I and II can also be obtained in high yields (up to 80%) in exchange reactions (eqs. 2a, 2b):

$$R_3MNCX + Cp_2VCI \rightarrow Cp_2VN = C = X + R_3MCI$$
(2a)

$$(\mathbf{R}_3\mathbf{M} = \mathbf{M}\mathbf{e}_3\mathbf{S}\mathbf{i}, \mathbf{E}\mathbf{t}_3\mathbf{S}\mathbf{n}, \mathbf{B}\mathbf{u}_3\mathbf{S}\mathbf{n}; \mathbf{X} = \mathbf{O}, \mathbf{S})$$

$$Bu_2Sn(NCS)_2 + 2Cp_2VCl \rightarrow 2Cp_2VN = C = S + Bu_2SnCl_2$$
(2b)

Reaction of the monochloride Cp₂VCl, with a double excess of R₃MNCX yields vanadocene d^1 -complex with concomitant oxidation of V¹¹¹ to V^{1V}. The reaction of tributylstannylisocyanate, -isothiocyanate or trimethylsilylisothiocyanate with Cp₂VCl (2:1) proceeds according to eq. 3 under conditions similar to those for reactions 1 and 2:

$$2R_{3}MNCX + Cp_{2}VCI \rightarrow Cp_{2}V(N=C=X)_{2} + R_{3}MCI + 1/2(R_{3}M)_{2}$$
(3)

$$(R_2M = Me_3Si, Bu_3Sn, X = S; R_3M = Bu_3Sn, X = O)$$

In these reactions the formation of asymmetric d^1 -complex Cp₂V(NCX)Cl as an intermediate takes place. Special experiments have shown it to symmetrize into $[Cp_2V(NCX)_2 + Cp_2VCl_2]$ at 150–190 °C (eq. 4).

$$\frac{2Cp_2V(NCS)Cl \xrightarrow{\text{totuene}}}{150\,^{\circ}C}Cp_2V(NCS)_2 + Cp_2VCl_2$$
(4)
(III)

Asymmetric d^1 -complexes have been obtained in exchange reactions from dichloride at room temperature:

$$R_{3}MNCX + Cp_{2}VCl_{2} \rightarrow Cp_{2}V(NCX)Cl + R_{3}MCl$$
(III), (IV)
(5)

$$(\mathbf{R}_3\mathbf{M} = \mathbf{Bu}_3\mathbf{Sn}, \mathbf{X} = \mathbf{O}; \mathbf{R}_3\mathbf{M} = \mathbf{Me}_3\mathbf{Si}, \mathbf{X} = \mathbf{S})$$

A two-fold excess of Me_3SiNCS in reaction 5 also gives an asymmetric product, but an exact 1:1 stoichiometry is required in the case of tributylstannylisocyanate $(100-150^{\circ}C, 1-2 h)$. Here besides $Cp_2V(NCO)Cl$ (IV) a symmetric diisocyanate of vanadocene is formed, probably as a result of the symmetrization mentioned above. Asymmetric product was isolated after reaction of isocyanate (I) with hydrogen chloride in dioxane:

$$Cp_2VNCO \xrightarrow{HCl} Cp_2V(NCO)Cl + 1/2H_2$$
(6)
(IV)

Similarly, HCl transforms isothiocyanate II into the asymmetric d^1 -complex, III.

When a mixture of Cp_2VCl_2 (or Cp_2TiCl_2) and Me_3SiNCS (or Bu_3SnNCO with molar ratio 1:2) is heated total substitution by Cl atoms of iso(or isothio)cyanate fragments takes place:

$$2R_{3}MNCX + Cp_{2}M'Cl_{2} \rightarrow Cp_{2}M'(NCX)_{2} + 2R_{3}MCl$$

$$R_{3}M = Bu_{3}Sn, X = O, S; R_{3}M = Me_{3}Si, X = S; M' = Ti, V$$
(7)

Diisocyanates of vanadocene are obtained in yields of over 90%, isothiocyanates – almost quantitatively, and the derivatives of titanocene – in yields of about 80%.

Thus, it has been found that pseudohalide ligands of N=C=X type readily displace halogen atoms from vanadocene and titanocene chlorides. In separate experiments we have shown that one pseudohalide ligand can be substituted by another, the substitution activity increasing in the following sequence: Cl < N=C=O < N=C=S. The reactivity of organotin pseudohalide is higher than that of organosilicon pseudohalide. For example, reaction with Bu₃SnNCS at room temperature in toluene solution readily transforms isocyanate I into isothiocyanate II (98%), whereas $Cp_2V(NCO)_2$ to transformed gradually into $Cp_2V(NCS)_2$ by reaction with Me₃SiNCS:

$$Bu_{3}SnNCS + Cp_{2}VNCO \rightarrow Cp_{2}VNCS + Bu_{3}SnNCO$$
(8)

An attempt to prepare asymmetric isocyanate or isothiocyanate d^1 -complex of vanadocene in the reaction of Cp₂V(NCO)₂ with Me₃SiNCS (1:1) was unsuccessful, and a mixture of symmetric vanadocene d^1 -complexes was obtained in this case.

Compounds III and IV as well as most of $Cp_2V d^1$ -complexes, green crystals of different shades, are not oxidized by atmospheric oxygen, whereas the blue-violet, monomeric d^2 -complexes I and II, are readily oxidized to form the corresponding oxides V and VI similar to those for titanocene and zirconocene [6,8]:

Compound (N)	Colour	FSR "	the party of the second second second second second	$IR^{h} v(cm^{-1})$	(Found (ca	lc.)(%)	and the second se	an fair a start and a start	Empirical
		$A_i(^{51}V)$ E	S.	N=C=X	Cp		Н	z	Λ	formula
Cp ₂ VNCO (I) ^c	blue-	144	44 A	2210	3100, 1005	59.73	4.56	5.74	22.81	C ₁₁ H ₁₀ NOV
	violet				800	(59.20)	(4.52)	(6.28)	(22.83)	
$C_{P_2}VNCS$ (II) ^d	black-	data i	1	2060	3100, 1015	55.62	4.87	5.55	21.56	C ₁₃ H ₁₀ NSV
	violet				1005, 810	(55.23)	(4.21)	(2.86)	(21.30)	
Cp ₂ V(NCS)CL (III) *	dark-	73.5	1.9846	2090	3090, 1025	47.69	3.74	5.14	18.45	C ₁₁ H ₁₀ CINSV
ĸ	green			2080	1005, 830	(48.10)	(3.67)	(5.10)	(18.55)	
Cp ₂ V(NCO)Cl (IV) /	light-	75.2	1.9831	2220	3100, 1015	50.97	4.20	5.39	20.09	C ₁₁ H ₁₀ CINOV
	green				1005, 830	(51.09)	(3.90)	(5.41)	(19.700)	
$[Cp_2V(NCO)]_{2}O(V)$	green-	;	ł	2210	3090, 1015	57.59	4.85	ł	22.27	$C_{22}H_{20}N_2O_3V_2$
	brown				1005, 805	(57.16)	(4.36)	(90.9)	(22.04)	
$[Cp_2V(NCS)]_2O(VI)$	brown		;	2060	3090, 1015	53.67	4.72	:	20.56	$C_{22}H_{20}N_2OS_2V_2$
					840	(53,44)	(4.08)	(3.66)	(20.61)	
$Cp_2V(NCO)_2$ ^{<i>g</i>}	intense	76.0	1.9786	2240,	3100, 1020					
	green	(76.1)	(1.985)	2220	1010, 835					
				(2239, 2213)						
Cp ₂ V(NCS) ₂ ^g	yellow-	73.1	1.9816	2082.	3090, 1025					
	green	(73.0,	(1.991,	2062	1010.840					
		73.4)	1.982)	(2092, 2066)						
$Cp_2Ti(NCO)_2$ ^q	orange	į	:	2230.	3100, 1030					
	red			2200	1015, 825					
				(2235, 2196)						
CP2Ti(NCS)2 ×	red-	÷	:	2040	3090, 1015					
	brown			2020	825					
				(2058, 2017)						
" In THF: accuracy: A,	$\frac{1}{2} = \frac{1}{2} = \frac{1}$. g _{i ±} 0.0001:	data from re	f. 8 are given ii	n parentheses. ^b	Data from 1	ef 9 are giv	en in paren	theses. ' Fou	ind: M, 230.8. calc: 223.1
introduction henceded	" Found M	291.0 calc.	739.2. Foun	ad- CE 12 76 🤟	ale 10 01 % 1	ounde CL13	76 mile 13	H K K K K K K K K K K K K K K K K K K K	awa compon	nde

Elemental analysis and some physical and chemical constants of vanadocene complexes.

Table 1

330

The reaction of vanadocene with bis(dibutylstannyl)oxydiisocyanate $Bu_2Sn(NCO)$ OSn(NCO)Bu₂ (toluene, 120°C, 10 h) also yields compound V, which was confirmed by their IR spectra.

The composition and structure of new compounds was confirmed by elemental analysis, cryoscopic molar mass determination, and ESR- and IR-spectroscopy (Table 1).

In order to determine phase transitions and melting/decomposition points, compounds I–VI as well a $Cp_2V(NCO)_2$ and $Cp_2V(NCS)_2$ have been investigated by use of differential thermal analysis (DTA). From DTA data, isocyanate I melts at 173°C (reversible endothermic effect) and decomposes with exothermic effect in the range 230–260°C with maximum at 250°C (Fig. 1, curve 1). Decomposition of compound V proceeds in two steps (150-170°C, 200-250°C) with the first exothermic effect with maximum at 165°C, and the second with a maximum at 225°C (Fig. 1, curve 2). Isothiocyanate II decomposes in two steps without melting; the first irreversible exothermic effect being observed in the range 140–170°C with a maximum at 161°C, and the second – in the range 215–255°C with a maximum at 243°C (Fig. 1, curve 3). The decomposition of compound VI is slightly endothermic at 175°C and becomes pronounced in the range 220–270°C, with maximum at 240°C (Fig. 1, curve 4).

When heated $Cp_2V(NCO)_2$, decomposes in two steps with the first exothermic effect being observed between 210-250 °C, with a maximum at 230 °C and the second, which is less pronounced, in the range 260-290 °C (Fig. 2, curve 1).

Fig. 1. Thermogram: $1 - Cp_2VNCO (I)$, $2 - [Cp_2V(NCO)]_2O (V)$, $3 - Cp_2VNCS (II)$, $4 - [Cp_2V(NCS)]_2O (VI)$, 5 - temperature change.

Fig. 2. Thermogram: $1 - Cp_2V(NCO)_2$; $2 - Cp_2V(NCO)Cl (IV)$; $3 - Cp_2V(NCS)_2$; $4 - Cp_2V(NCS)Cl (III)$; 5 - temperature change.

Thermal decomposition of Cp₂VCl(NCO) occurs in three steps. Exothermic effects are observed between 130-150 °C, 215-240 °C and 250-280 °C, with maxima at 145, 220 and 270 °C, respectively (Fig. 2, curve 2). Decomposition of Cp₂V(NCS)₂ produces two exothermic effects: one – in the range 240-250 °C with a maximum at 245 °C, and another, which is more pronounced, from 250 to 275 °C with a maximum at 266 °C (Fig. 2, curve 3). Decomposition of Cp₂V(NCS)Cl is similar to that of Cp₂V(NCO)Cl, i.e. it proceeds in three steps: the first exothermic effect is observed between 200-230 °C with a maximum at 220 °C, the second – from 235 to 250 °C with a maximum at 240 °C and the third – from 250 °C to 280 °C with a maximum at 265 °C (Fig. 2, curve 4).

The DTA data confirm the fact that under the action of atmospheric oxygen, compounds I and II are irreversibly transformed into new products, although no marked changes are observed in their IR spectra, and complexes $Cp_2V(NCX)Cl$ in the first step of decomposition are symmetrized into $Cp_2V(NCX)_2$ and Cp_2VCl_2 and then decompose further in their characteristic temperature ranges.

Experimental

All reactions were carried out under argon or under vacuum. IR spectra were recorded on a Perkin–Elmer 577 spectrophotometer. ESR data were recorded with a Bruker-ER-200D-SRC spectrometer in X-range with a working frequency of 9.4 GHz. The standard for the determination of the g-factor values was Mn^{2+} in the

Table 2

action products of vanadocene, vanadocene chlorides and titanocene dichloride with organotin and	-silicon pseudohalides.
action products of vanadocene, vanadocene chlorides and titanocene dichloride with	organotin and
action products of vanadocene, vanadocene chlorides and titanocene d	ichloride with
action products of vanadocene, vanadocene chlorides an	d titanocene d
action products of vanadocene, var	nadocene chlorides an
action products (of vanadocene, var
122	action products a

Original compounds		Reaction conditic	sue	Reaction products	
Reagent (mmol)	Substrate (mmol)	T, (°C)	Time, h	Cp ₂ V(Ti)-heterocumulene mmol (yield (%))	Other products, mmol (yield (%))
Cp ₂ V (9.45)	Bu ₃ SnNCO (9.49)	20	480	Cp ₂ VNCO, 3.80 (40)	$(Bu_3Sn)_2^{b}, 1.41 (30)$
Cp.V (5.18)	Me ₁ SiNCS (10.37)	120	4	Cp ₂ VNCS, 4.94 (95)	(Me ₃ Si) ₂ ^c , Me ₃ SiNCS ^c
Cp ₂ V (12.68)	Bu ₃ SnNCS (12.68)	20	48	Cp ₂ VNCS, 11.04 (87)	$(Bu_3Sn)_2^{-d}$, 4.88 (77)
Cp,V (6.14)	Bu ₂ Sn(NCS) ₂ (3.07)	20	240	C _{D2} VNCS, 4.18 (68)	$(Bu_2Sn)_n$
Cp,VCI (2.32)	Bu ₁ SnNCO (2.32)	20	72	C _{P2} VNCO, 0.77 (33)	Bu ₃ SnCl, 2.00 (86)
Cp,VCI (2.89)	Bu ₃ SnNCO (5.78)	120	3	Cp ₂ V(NCO) ₂ , 1.17 (40)	Bu ₃ SnCl 1.63 (56);
~ ~ 4					$(Bu_3Sn)_2^{-b}, 0.31 (22)$
Cp,VCl (1.41)	Me ₃ SiNCS (1.41)	20	480	Cp ₂ VNCS, 1.03 (73)	Me ₃ SiCl ^{-c} , 0.46 (33)
Cp,VCl (4.20)	Me ₃ SiNCS (8.40)	120 - 150	10	Cp ₂ V(NCS) ₂ , 3.19 (76)	Me ₃ SiCl ⁻⁷ , 3.08 (73),
•	'n				$(Me_3Si)_2$ ^c , 0.68 (32)
Cp,VCI (2.77)	Bu ₁ SnNCS (2.77)	20	480	Cp ₂ VNCS, 2.10 (75)	Bu ₃ SnCl, 1.90 (68)
Cp ₅ VCI (3.30)	Bu ₃ SnNCS (6.60)	120	2	Cp ₂ V(NCS) ₂ , 2.36 (71)	Bu ₃ SnCl, 4.30 (65);
4					$(Bu_3Sn)_2^{-b}, 0.17 (11)$
Cp,VCI (2.86)	Bu ₂ Sn(NCS) ₂ (1.43)	20	240	Cp ₂ VNCS, 2.01 (70)	Bu_2SnCl_2 , 1.32 (92)
Cp,VCl, (1.89)	Bu ₁ SnNCO (3.78)	20	240	Cp ₂ V(NCO) ₂ , 1.55 (82)	Bu ₃ SnCl 2.98 (79)
Cp ₂ VCl ₂ (1.98)	Bu ₃ SnNCO (1.98)	150	2	Cp ₂ V(NCO)Cl, 1.66 (84)	Bu ₃ SnCl, 1.66 (84)
Cp,VCI, (1.98)	Bu ₃ SnNCS (3.96)	20	120	Cp ₂ V(NCS) ₂ , 1.97 (99)	Bu ₃ SnCl, 3.35 (84.5)
Cp.VCl ₂ (3.97)	Me ₃ SiNCS (7.94)	120-150	5	Cp ₂ V(NCS) ₂ , 3.83 (96.5)	Me ₃ SiCl ⁶ , 1.84 (23)
Cp,VCl, (5.95)	Me ₃ SiNCS (11.90)	20	200	Cp ₂ V(NCS)Cl, 5.46 (92)	Me ₃ SiCl ^b , Me ₃ SiNCS ^b
Cp,VNCO (1.58)	Bu ₃ SnNCS (1.58)	20	72	Cp ₂ VNCS, 1.57 (99)	Bu ₃ SnNCO, 0.48 (30)
$Cp_{2}TiCl_{2}$ (4.01)	bu ₃ SnNCO (8.02)	120-150	10	Cp ₂ Ti(NCO) ₂ , 3.15 (78.5)	Bu ₃ SnCl, 7.46 (93)
$C_{p_2}TiCl_2$ (2.02)	Me_3SiNCS (4.04)	120-150	10	Cp ₂ Ti(NCS) ₂ , 1.60 (79)	Me ₃ SiCl ^h

^a Reactions were carried out in toluene or hexane in evacuated sealed ampoules.^b (Bu₃Sn)₂ is determined by iodometry in toluene.^c (Me₃Si)₂ is determined by GLC.

.....

:

crystal lattice of MgO. GLC analysis of products as carried out on a Tsvet-129 chromatograph with a catarometer detector, using a 300×0.4 cm column packed with SE-30 (5%) on Chromaton N-AW-HMDS (0.20-0.25 mm) (T 60°C), with helium as the carrier gas (rate, 20 ml/min). Melting points and decomposition temperatures were determined by DTA using evacuated capillaries. Al₂O₃ was used as the standard. The temperature was incrased at a rate of 5°C/min. The experimental data are given in Table 2.

Preparation of $his(\pi$ -cyclopentadienyl)vanadium isocyanate (1)

A mixture of tributylstannylisocyanate (3.15 g, 9.49 mmol) and vanadocene (1.71 g, 9.45 mmol) in 30 ml of hexane was kept for 20 d at room temperature in an evacuated sealed ampoule, and 0.85 g (40%) of a blue-violet. fine crystalline compound (I) was found to have separated. Found: C, 59.73: H, 4.56: N, 5.74; V, 22.11. $C_{11}H_{10}NOV$ calc: C, 59.20; H, 4.52; N, 6.28; V, 22.83%. (Bu₃Sn)₂ (0.82 g, 30%) was disilled from the reaction solution in vacuo. The yield of hexabutyldistannane was also checked by iodometric titration.

Similarly, a mixture of tributylstannylisocyanate (1.97 g, 5.93 mmol) and Cp₂V (0.54 g, 2.99 mmol) in hexane was heated at 120 °C for 4 h from the resulting mixture was isolated 0.20 g (30%) of compound I and 0.42 g (48%) of $(Bu_3Sn)_2$. Heating a mixture of Bu_3SnNCO (0.77 g, 2.32 mmol) and Cp₂VCl (0.50 g, 2.32 mmol) in toluene solution at 20 °C for 36 h yielded 0.17 g (33%) of compound (1) and 0.65 g (86%) of tributylstannylchloride.

Preparation of $bis(\pi$ -cyclopentadienyl)vanadiumisothiocyanate (11)

Reaction of tributylstannylisothiocyanate (4.41 g, 12.68 mmol) with Cp₂V (2.30 g, 12.68 mmol) (20 °C, 48 h) yielded 2.64 g (87%) of compound II (blue-black fine crystalline powder). Found: C, 55.62; H, 4.87; N, 5.55; V. 21.56. $C_{11}H_{10}NSV$ calcd.: C, 55.23; H, 4.21; N, 5.86; V, 21.30%. 2.83 g (77%) of hexabutyldistannane was detected in the reaction solution.

In a similar way reaction of 0.31 g (1.41 mmol) of Cp₂VCl and 0.18 g (1.41 mmol) of Me₃SiNCS gave 0.25 g (73%) of compound (II) and 0.05 g (33% by GLC) of trimethylchlorosilane.

Reaction of Cp₂V (0.94 g, 5.18 mmol) with Me₃SiNCS (1.36 g, 10.37 mmol), Cp₂VCl (0.60 g, 2.77 mmol) with Bu₃SnNCS (0.96 g, 2.77 mmol). Cp₂V (1.11 g, 6.14 mmol) with Bu₂Sn(NCS)₂ (1.07 g, 3.07 mmol) or Cp₂VCl (0.62 g, 2.86 mmol) with Bu₂Sn(NCS)₂ (0.50 g, 1.43 mmol) gave 1.18 g (95%), 0.50 g (75%), 1.0 g (68%) or 0.49 g (71%) of compound II and (Me₃Si)₂ (GLC). Bu₃SnCl (0.62 g, 68%). (Bu₂Sn)_n or Bu₂SnCl₂ (0.4 g, 92%), respectively.

Similarly, reaction of Bu $_3$ SnNCS (0.55 g, 1.58 mmol) and Cp $_2$ VNCO (0.35 g, 1.58 mmol) (hexane, 20°C, 72 h) gave 0.37 g (97% of Cp $_2$ VNCS. 0.16 g (31%) of Bu $_3$ SnNCO was isolated by distillation in vacuo.

Preparation of $bis(\pi$ -cyclopentadienyl)vanadiumisothiocyanate chloride (111)

A mixture of trimethylsilylisothiocyanate (1.56 g, 11.89 mmol) and Cp_2VCl_2 (1.5 g, 5.95 mmol) in toluene (35 ml) was vigorously stirred at room temperature for 200 h in a sealed ampoule. The ampoule was opened in air, the resulting dark-green fine crystalline precipitate was washed with successively toluene, alcohol and ether, and then dried to yield 1.50 g (92%) of compound HI. Found: C, 47.69; H, 3.74; Cl. 12.76; N, 5.14; V, 18.45, $C_{11}H_{10}CINSV$ caled.: C, 48.10; H, 3.67; Cl, 12.91; N, 5.10;

Preparation of $bis(\pi$ -cyclopentadienyl)vanadiumisocyanate chloride (IV)

A mixture of triethylstannylisocyanate (1.13 g, 4.56 mmol) and Cp₂VCl (0.99 g, 4.56 mmol) in toluene (15 ml) was kept at room temperature for 24 h in an evacuated sealed ampoule till the colour of the reaction mixture changed from blue (Cp₂VCl) to an intense blue-violet (Cp₂VNCO). HCl in dioxane (0.34 g, 9.32 mmol) was added to the mixture in vacuo. The ampoule was opened in air, and after 24 h the reaction products were washed successively with toluene, alcohol and ether to give 0.50 (42%) of a green finely-divided precipitate of compound IV.

Preparation of $bis(\pi$ -cyclopentadienyl)vanadiumdiisocyanate *

A mixture of tributylstannylisocyanate (1.25 g, 3.78 mmol) and Cp_2VCl_2 (0.48 g, 1.89 mmol) in toluene (30 ml) was kept in an evacuated sealed ampoule at room temperature for 240 h, to give 0.41 g (82%) of $Cp_2V(NCO)_2$ and 0.97 g (79%) of Bu₃SnCl. A mixture of Bu₃SnNCO (1.92, 5.78 mmol) and Cp_2VCl (0.63 g, 2.89 mmol) in toluene (30 ml) was kept at room temperature for 120 h. The resulting violet solution was heated at 120–150 °C for 3 h, then the ampoule was opened in air, and the brown precipitate washed with alcohol. The residue was extracted with acetone and the resulting green crystals were washed with alcohol and then CCl_4 to give 0.31 g (40%) of $Cp_2V(NCO)_2$. The filtrates were found to contain 0.53 g (56%) of Bu₃SnCl and 0.18 g (22%) of hexabutyldistannane.

Preparation of $bis(\pi$ -cyclopentadienyl)vanadiumdiisothiocyanate *

A mixture of trimethylsilylisothiocyanate (1.10 g, 8.40 mmol) and Cp₂VCl (0.91 g, 4.20 mmol) in toluene (30 ml) was heated at 120–150 °C for 10 h to give 0.95 g (76%) of Cp₂V (NCS)₂. The filtrate contained 0.33 g (73%) of trimethylchlorosilane and 0.10 g (32%) of hexamethyldisilane based on GLC data. Similarly, reaction of Bu₃SnNCS (2.3 g, 6.60 mmol) with Cp₂VCl (0.71 g, 3.30 mmol) (120 °C, 2 h), Me₃SiNCS (1.04 g, 7.94 mmol) with Cp₂VCl₂ (1.0 g, 3.97 mmol) (120–150 °C, 5 h) or Bu₃SnNCS (1.38 g, 3.96 mmol) with Cp₂VCl₂ (0.5 g, 1.98 mmol) 20 °C, 120 h) gave 0.70 g (71%) of Cp₂V(NCS)₂, 1.4 g (65%) of Bu₃SnCl and 0.10 g (11%) of (Bu₃Sn)₂, 1.14 g (96.5%) of Cp₂V(NCS)₂ and 0.20 g (23%) of Me₃SiCl or 0.58 g (99%) of Cp₂V(NCS)₂ and 1.09 g (85.5%) of Bu₃SnCl, respectively.

Preparation of bis(π -cyclopentadienyl)titaniumdiisocyanate and -diisothiocyanata **

Similarly, reaction of Me₃SiNCS (0.53 g, 4.04 mmol) with Cp_2TiCl_2 (0.5 g, 2.02 mmol) or Bu₃SnNCO (2.68 g, 8.08 mmol) with Cp_2TiCl_2 (1.0 g, 4.04 mmol) yielded 0.47 g (80%) of $Cp_2Ti(NCS)_2$ and Me₃SiCl or 0.83 g (78.5%) of $Cp_2Ti(NCO)_2$, and 2.43 g (93%) of Bu₃SnCl, respectively.

References

1 G.A. Razuvaev, V.N. Latyaeva, E.V. Krasilnikova, A.N. Lineva, E.N. Gladyshev and M.E. Pudeeva, Zh. Obshch. Khim., 50 (1980) 96.

^{*} A known compound

^{**} Known compounds

- 2 G.A. Razuvaev, V.N. Latyaeva and A.N. Lineva, Zh. Obshch. Khim., 39 (1969) 408.
- 3 V.N. Latyaeva, A.N. Lineva, S.V. Zimina, N.N. Vyshinski and O.S. Ellert, Zh. Obshch, Khim., 55 (1985) 601.
- 4 G.A. Razuvaev, V.N. Latyaeva, L.I. Vyshinskaya and V.V. Drobotenko, J. Organomet. Chem., 208 (1981) 169.
- 5 V.N. Latyaeva, A.N. Lineva, S.V. Zimina and E.B. Krasilnikova, Tez. dokl. VI Evrop. konf. MOS, Riga, (1985) 79.
- 6 A.S. Gordetsov, V.N. Latyaeva and A.N. Lineva, Khimiya EOS, Gorky, (1981) 31.
- 7 A.S. Gordetsov, V.P. Kozyukov, I.A. Vostokov, S.V. Sheludyakova, Yu.I. Dergunov and V.F. Mironov, Usp. Khim., 51 (1982) 848.
- 8 A.S. Gordetsov, S.V. Zimina, V.V. Pereshein and R.P. Zakharova, Zh. Obshch, Khim., 56 (1986) 722.
- 9 R.S.P. Coutts and P.C. Wailes, Aust. J. Chem., 19 (1966) 2069.
- 10 S.A. Giddings, Inorg. Chem., 6 (1967) 849.
- 11 G.A. Razuvaev, G.A. Abakumov and V.K. Cherkasov, Usp. Khim., 54 (1985) 1235.
- 12 J.L. Burmeister, E.A. Deardorff, A. Jensen and V.H. Christiansen, Inorg. Chem., 9 (1970) 58.